Какие комнатные растения несут

News image

Многие хозяйки воспринимают растение в горшке в качестве хорошего украшения квартиры. Однако далеко не все в ку...

Мускатная тыква

News image

Это скорее не тыква, а гигантская морковь. Имея продолговатую форму (подобную кабачку), она на 2/3 со...

Съедобные сорняки

News image

Многие недоверчиво относятся к выражению «съедобные сорняки», потому что не знают, что такие существуют. Слово ...

Бузулукский бор

News image

Бузулукский бор Оренбургской области – уникальное, заповедное место – громадное скопление реликтовых сосен и свежих на...



Ботаника как наука - Физиология растения

Болезни растений вызываются паразитическими грибами, бактериями, вирусами, вироидами, микоплазмами, нематодами. Нематоды и растения-паразиты могут быть переносчиками вирусов. Различают следующие группы патогенов:

1. Факультативные (необязательные) паразиты, которые, являясь сапрофитами, живут на мертвых остатках растений, но могут поражать живые ослабленные растения.

2. Факультативные сапрофиты ведут в основном паразитический образ жизни и реже - сапрофитный.

3. Облигатные (обязательные) паразиты поражают только живые растения.

По характеру питания паразитов делят на некротрофов и биотрофов. Некротрофы (все факультативные паразиты и некоторые факультативные сапрофиты) поселяются на предварительно убитой ими ткани. Клетки растения-хозяина погибают и перевариваются под действием токсинов и гидролитических ферментов, выделяемых патогеном. Биотрофы (облигатные паразиты) определенное время сосуществуют с живыми клетками растения-хозяина.

Устойчивость растений к патогенам определяется, как было установлено Х. Флором в 50-е годы 20 века взаимодействием комплементарной пары генов растения-хозяина и патогена, соответственно, гена устойчивости (R) и гена авирулентности (Аvr). Специфичность их взаимодействия предполагает, что продукты экспрессии этих генов участвуют в распознавании растением патогена с последующим активированием сигнальных процессов для включения защитных реакций.

Продукты экспрессии некоторых R генов установлены. Это белки и все они содержат повтор, богатый лейцином, а также протеинкиназный и нуклеотидсвязывающий домены. Домен белка, содержащий повтор, богатый лейцином, ответственен за связывание белка с белком, то есть отвечает за распознавание патогена. Протеинкиназный и нуклеотидсвязывающий домены участвуют в фосфорилировании белков и регуляции экспрессии защитных генов, соответственно.

Со стороны патогенов в процессе узнавания участвуют элиситоры. Это вещества, индуцирующие в устойчивых растениях экспрессию защитных генов. Растительные глюканазы, разрушая полисахариды клеточных стенок грибов и бактерий, превращают их в низкомолекулярные элиситоры (b-связанные глюканы и хитозан). Элиситором является и липогликопротеиновый комплекс (активная часть –  ненасыщенные жирные кислоты: арахидоновая и эйкозапентаеновая). Элиситорными свойствами обладает углеводная часть маннан-содержащих гликопротеинов.

При разрушении пектиновых полисахаридов растительных клеточных стенок полигалактуроназами патогенов  образуются особые вещества (сигналы тревоги), которые мигрируют в здоровые клетки, где индуцируют защитные реакции. Эти вещества получили название констуитивных или эндогенных элиситоров или олигосахаринов. Активной частью является додека-a-1,4-галактуронин, состоящий из 12 галактуронозильных остатков.

Растение распознает элиситоры своими рецепторами, расположенными в клеточной стенке и плазмалемме. Образование комплекса элиситор-рецептор включает защитные механизмы растения. Однако взаимодействию грибных элиситоров с рецепторами препятствуют супрессоры – низкомолекулярные глюканы, выделяемые гифой гриба и конкурирующие с элиситором за связывание с рецептором. Если супрессор связывается с рецептором, то защитные реакции не включаются.

Для грибов и бактерий известно, что их элиситоры связываются с внешним (локализованным снаружи плазмалеммы) участком белкового рецептора, расположенного в плазмалемме. В результате этого связывания происходит автофосфорилирование внешнего участка рецептора и изменение его конформации. Остаток фосфорной кислоты передается на внутренний участок рецептора, что также изменяет его конформацию. Следствием взаимодействия рецептора с элиситором является активация каскада передачи сигнала для возбуждения экспрессии защитных генов. В настоящее время известно 7 сигнальных систем: циклоаденилатная, MAP-киназная (mitogen-activated protein-kinase), фосфатидокислотная, кальциевая, липоксигеназная, НАДФ·Н-оксидазная (супероксидсинтазная), NO-синтазная.

В пяти первых сигнальных системах посредником между цитоплазматической частью рецептора и первым активируемым ферментом являются G-белки. Эти белки локализованы на внутренней стороне плазмалеммы. Их молекулы состоят из трех субъединиц: a, b и g. В состоянии покоя все субъединицы образуют комплекс, где a-субъединица связана с гуанозиндифосфатом. В результате конформационных изменений после связывания с элиситором рецептор присоединяется к G-белку. При этом гуанозиндифосфат отсоединяется от a-субъединицы и его место занимает гуанозинтрифосфат. После этого a-субъединица отделяется от двух других субъединиц и связывается с каким-либо эффектором, например, аденилатциклазой. Затем a-субъединица гидролизует гуанозинтрифосфат до гуанозиндифосфата, инактивируется, отделяется от эффектора и присоединяется к свободным b- и g-субъединицами. Таким образом, G-белки, связываясь с эффекторами, включают сигнальные пути.

Кратко рассмотрим каждую сигнальную систему.

Циклоаденилатная сигнальная система. Взаимодействие стрессора с рецептором на плазмалемме приводит к активации аденилатциклазы, которая катализирует образование циклического аденозинмонофосфата (цАМФ) из АТФ. цАМФ активирует ионные каналы, включая кальциевую сигнальную систему, и цАМФ-зависимые протеинкиназы. Эти ферменты активируют белки-регуляторы экспрессии защитных генов, фосфорилируя их.

MAP-киназная сигнальная система. Активность протеинкиназ повышается у растений, подвергнутых стрессовым воздействиям (синий свет, холод, высушивание, механическое повреждение, солевой стресс), а также обработанных этиленом, салициловой кислотой или инфицированных патогеном.

В растениях функционирует протеинкиназный каскад как путь передачи сигналов. Связывание элиситора с рецептором плазмалеммы активирует киназу киназы МАР-киназы. Она катализирует фосфорилирование цитоплазматической киназы МАР-киназы, которая активирует при двойном фосфорилировании треониновых и тирозиновых остатков МАР-киназу. Она переходит в ядро, где фосфорилирует белки-регуляторы транскрипции.

Фосфатидокислотная сигнальная система. В клетках животных G белки под воздействием стрессора активируют фосфолипазы C и D. Фосфолипаза С гидролизует фосфатидилинозитол-4,5-бифосфат с образованием диацилглицерола и инозитол-1,4,5-трифосфата. Последний освобождает Са2+ из связанного состояния. Повышенное содержание ионов кальция приводит к активации Са2+-зависимых протеинкиназ. Диацилглицерол после фосфорилирования специфичной киназой превращается в фосфатидную кислоту, которая является сигнальным веществом в животных клетках. Фосфолипаза D непосредственно катализирует образование фосфатидной кислоты из липидов (фосфатидилхолин, фосфатидилэтаноламин) мембран.

У растений стрессоры активируют G белки, фосфолипазы С и D у растений. Следовательно, начальные этапы этого сигнального пути одинаковы у животных и растительных клеток. Можно предположить, что в растениях также происходит образование фосфатидной кислоты, которая может активировать протеинкиназы с последующим фосфорилированием белков, в том числе и факторов регуляции транскрипции.

Кальциевая сигнальная система. Воздействие различных факторов (красного света, засоления, засухи, холода, теплового шока, осмотического стресса, абсцизовой кислоты, гиббереллина и патогенов) приводит к повышению содержания ионов кальция в цитоплазме за счет увеличения импорта из внешней среды и выхода из внутриклеточных хранилищ (эндоплазматического ретикулума и вакуоли).

Повышение концентрации ионов кальция в цитоплазме приводит к активации растворимых и мембранносвязанных Са2+-зависимых протеинкиназ. Они участвуют в фосфорилировании белковых факторов регуляции экспрессии защитных генов. Однако было показано, что Са2+ способен непосредственно влиять на человеческий репрессор транскрипции, не задействуя каскад фосфорилирования белков. Также ионы кальция активируют фосфатазы и фосфоинозитспецифичную фосфолипазу С. Регулирующее действие кальция зависит от его взаимодействия с внутриклеточным рецептором кальция - белком кальмодулином.

Липоксигеназная сигнальная система. Взаимодействие элиситора с рецептором на плазмалемме приводит к активации мембранносвязанной фосфолипазы А2, которая катализирует выделение из фосфолипидов плазмалеммы ненасыщенных жирных кислот, в том числе линолевой и линоленовой. Эти кислоты являются субстратами для липоксигеназы. Субстратами для этого фермента могут быть не только свободные, но и входящие в состав триглицеридов ненасыщенные жирные кислоты. Активность липоксигеназ повышается при действии элиситоров, заражении растений вирусами и грибами. Увеличение активности липоксигеназ обусловлено стимуляцией экспрессии генов, кодирующих эти ферменты.

Липоксигеназы катализируют присоединение молекулярного кислорода к одному из атомов (9 или 13) углерода цис,цис-пентадиенового радикала жирных кислот. Промежуточные и конечные продукты липоксигеназного метаболизма жирных кислот обладают бактерицидными, фунгицидными свойствами и могут активировать протеинкиназы. Так, летучие продукты (гексенали и ноненали) токсичны для микроорганизмов и грибов, 12-гидрокси-9Z-додеценовая кислота стимулировала фосфорилирование белков у растений гороха, фитодиеновая, жасмоновая кислоты и метилжасмонат через активирование протеинкиназ повышают уровень экспресии защитных генов.

НАДФ·Н-оксидазная сигнальная система. Во многих случаях заражение патогенами стимулировало продукцию реактивных форм кислорода и гибель клеток. Реактивные формы кислорода не только токсичны для патогена и инфицированной клетки растения-хозяина, но и являются участниками сигнальной системы. Так, перекись водорода активирует факторы регуляции транскрипции и экспрессию защитных генов.

NO-синтазная сигнальная система. В макрофагах животных, убивающих бактерии, наряду с реактивными формами кислорода действует окись азота, усиливающая их антимикробное действие. В животных тканях L-аргинин под действием NO-синтазы превращается в цитруллин и NO. Активность этого фермента была обнаружена и в растениях, причем вирус табачной мозаики индуцировал повышение его активности в устойчивых растениях, но не влиял на активность NO-синтазы в чувствительных растениях. NO, взаимодействуя с супероксидом кислорода, образует очень токсичный пероксинитрил. При повышенной концентрации окиси азота активируется гуанилатциклаза, которая катализирует синтез циклического гуанозинмонофосфата. Он активирует протеинкиназы непосредственно или через образование циклической АДФ-рибозы, которая открывает Са2+ каналы и тем самым повышает концентрацию ионов кальция в цитоплазме, что в свою очередь, приводит к активации Са2+-зависимых протеинкиназ.

Таким образом, в клетках растений существует скоординированная система сигнальных путей, которые могут действовать независимо друг от друга или сообща. Особенностью работы сигнальной системы является усиление сигнала в процессе его передачи. Включение сигнальной системы в ответ на воздействие различных стрессоров (в том числе и патогенов) приводит к активации экспрессии защитных генов и повышению устойчивости растений.

Устойчивость растений к патогенам основана на разнообразных механизмах защиты. В целом эти механизмы подразделяют на: 1) конституционные, то есть присутствующие в тканях растения-хозяина до заражения, и 2) индуцированные, то есть возникшие в ответ на контакт с паразитом или его внеклеточными выделениями.

Конституционные механизмы: а) особенности структуры тканей, обеспечивающие механический барьер для проникновения патогена, б) способность к выделению веществ с антибиотической активностью (например, фитонцидов), в) отсутствие или недостаток веществ, жизненно важных для роста и развития паразита.

Индуцированные механизмы: а) усиление дыхания, б) накопление веществ, обеспечивающих устойчивость, в) создание дополнительных защитных механических барьеров, г) развитие реакция сверхчувствительности.

Устойчивость к нектрофам обеспечивают следующие механизмы: 1) детоксикация токсинов паразита (например, викторина - токсина возбудителя гельминтоспориоза овса в устойчивых растениях овса), 2) отсутствие у устойчивых растений рецепторов, связывающих токсин (у восприимчивых растений связывание токсина с рецептором в плазмалемме хозяина приводит к гибели клетки, 3) инактивация экзоферментов  паразита неспецифическими ингибиторами типа фенолов, 4) задержка синтеза экзоферментов паразита устранением (маскировкой) их субстратов (например, синтез пектиназы и пектинметилэстеразы, осуществляемый некротрофами лишь в присутствии субстрата - пектиновых веществ, при поражении не происходит из-за усиления суберинизации и лигнификации клеточных стенок растения-хозяина в месте поражения, что маскирует пектиновые соединения), 5) повреждение клеточных стенок паразита ферментами растения-хозяина - хитиназой, глюканазой.

Взаимодействие растения и паразита происходит на поверхности растения, которая служит первой линией его обороны. Споры патогена или сам патоген вначале должны удержаться на поверхности органа. Этому у многих растений препятствует отложение воска на кутикуле эпидермальных клеток, что делает поверхность плохо смачиваемой водой, необходимой для прорастания спор. Патогены (грибы, бактерии, вирусы, передающиеся механическим путем) преодолевают этот барьер через устьица и поранения. Покровные ткани служат не только механической преградой, но и токсическим барьером, так как содержат разнообразные антибиотические вещества. Эти защитные свойства присущи поверхности растения до контакта с патогеном и усиливаются после заражения. При заболевании происходит отложение гидроксипролинбогатых гликопротеинов (экстенсинов), суберина и лигнина в клеточные стенки растений. В результате повышается их механическая прочность, ограничивается проникновение и распространение паразита и приток питательных веществ к паразиту, компоненты стенки защищены от атаки ферментами паразита. Лигнин может откладываться и в клеточной стенке гиф грибов, останавливая их рост. Немногие грибы способны расщеплять лигнин. Если возбудитель образует на поверхности листа апрессорий (орган-присоску для преодоления клеточной стенки), то непосредственно под ним клеточная стенка утолщается. Образуется бугорок-папилла, содержащий лигнин и кремний. Его своевременное формирование не позволяет паразиту проникнуть в клетку. В устойчивых растениях хлопчатника при поражении грибами родов Verticillium и Fusarium патоген, попадая через корни в проводящую систему, задерживается тиллами (выпячиваниями в сосудах, представляющими собой содержимое соседних паренхимных клеток, покрытое пектиновым чехлом). Задержанный гриб повреждается антибиотическими веществами.

Патоген, преодолев поверхностные барьеры и попав в проводящую систему и клетки растения, вызывает заболевание растения. Характер заболевания зависит от устойчивости растения. По степени устойчивости выделяют четыре категории растений: чувствительные, толерантные, сверхчувствительные и крайне устойчивые (иммунные). Кратко охарактеризуем их на примере взаимодействия растений с вирусами.

В чувствительных растениях вирус транспортируется из первично зараженных клеток по растению, хорошо размножается и вызывает разнообразные симптомы заболевания. Однако и в чувствительных растениях существуют защитные механизмы, ограничивающие вирусную инфекцию. Об этом свидетельствует, например, возобновление репродукции вируса табачной мозаики в протопластах, изолированных из зараженных листьев растений табака, в которых закончился рост инфекционности. Темно-зеленые зоны, образующиеся на молодых  листьях больных чувствительных растений, характеризуются высокой степенью устойчивости к вирусам. Клетки этих зон почти не содержат вирусных частиц по сравнению с соседними клетками светло-зеленой ткани. Низкий уровень накопления вирусов в клетках темно-зеленой ткани связан с синтезом антивирусных веществ. В толерантных растениях вирус распространяется по всему растению, но плохо размножается и не вызывает симптомов. В сверхчувствительных растениях первично инфицированные и соседние клетки некротизируются, локализуя вирус в некрозах. Считается, что в крайне устойчивых растениях вирус репродуцируется только в первично зараженных клетках, не транспортируется по растению и не вызывает симптомов заболевания. Однако был показан транспорт вирусного антигена и субгеномных РНК в этих растениях, а при выдерживании зараженных растений при пониженной температуре (10-15оС) на инфицированных листьях формировались некрозы.

Наиболее хорошо изучены механизмы устойчивости сверхчувствительных растений. Образование локальных некрозов является типичным симптомом сверхчувствительной реакции растений в ответ на поражение патогеном. Они возникают в результате гибели группы клеток в месте внедрения патогена. Смерть инфицированных клеток и создание защитного барьера вокруг некрозов блокируют транспорт инфекционного начала по растению, препятствует доступу к патогену питательных веществ, вызывают элиминацию патогена, приводят к образованию антипатогенных ферментов, метаболитов и сигнальных веществ, которые активируют защитные процессы в соседних и отдаленных клетках, и в конечном итоге, способствуют выздоровлению растения. Гибель клеток происходит из-за включения генетической программы смерти и образования соединений и свободных радикалов, токсичных как для патогена, так и для самой клетки.

Некротизация инфицированных клеток сверхчувствительных растений, контролируемая генами патогена и растения-хозяина, является частным случаем программированной клеточной смерти (PCD – programmed cell death). PCD необходима для нормального развития организма. Так, она происходит, например, при дифференциации трахеидных элементов в ходе образования ксилемных сосудов и гибели клеток корневого чехлика. Эти периферические клетки погибают даже тогда, когда корни растут в воде, то есть гибель клеток является частью развития растения, а не вызвана действием почвы. Сходство между PCD и гибелью клеток при сверхчувствительной реакции заключается в том, что это два активных процесса, в некротизирующейся клетке также повышается содержание ионов кальция в цитоплазме, образуются мембранные пузырьки, увеличивается активность дезоксирибонуклеаз, ДНК распадается на фрагменты с 3’ОН концами, происходит конденсация ядра и цитоплазмы.

Помимо включения PCD, некротизация инфицированных клеток сверхчувствительных растений происходит в результате выхода фенолов из центральной вакуоли и гидролитических ферментов из лизосом вследствие нарушения целостности клеточных мембран и увеличения их проницаемости. Снижение целостности клеточных мембран обусловлено перекисным окислением липидов. Оно может происходить при участии ферментов и неферментативным путем в результате действия реактивных форм кислорода и свободных органических радикалов. Выше было показано, что в растениях при заболевании увеличивалась активность фосфолипаз и липоксигеназ. Известны такие виды реактивного кислорода, как супероксидный (О2·-), пергидроксильный (НО2·), который является протонированной формой супероксида, гидроксильный (ОН·) радикалы, перекись водорода (Н2О2), синглетно-возбужденный кислород (1О2). Реактивные формы кислорода постоянно присутствуют в растительных клетках в небольшом количестве, образуясь в процессе  окислительно-восстановительных реакций. Очень быстрое накопление реактивных форм кислорода было показано для различных комбинаций растение-патоген и при обработке элиситорами. Окислительный взрыв происходил и при воздействии абиотических факторов: ультрафиолетового облучения (280-320 нм), повышенной температуре, осмотическом и механическом стрессах.

Нарушение целостности клеточных мембран и увеличение их проницаемости обусловлены также действием так называемого “киллера протопластов”, обнаруженного в некротизированных листьях сверхчувствительных растений табака, пораженных вирусом табачной мозаики или бактериями. Было показано, что водные экстракты некротизированных листьев токсичны для изолированных протопластов. В наших опытах на основании данных по гель-фильтрации и ионно-обменной хроматографии экстрактов некротизированных листьев растений табака сорта Ксанти нк было установлено, что “киллер протопластов” является кислым белком с молекулярной массой примерно 70 кДа.

Одним из характерных свойств сверхчувствительных растений является приобретенная (индуцированная) устойчивость к повторному заражению патогеном. Были предложены термины: системная приобретенная устойчивость (systemic acquired resistance - SAR) и локальная приобретенная  устойчивость (localized acquired resistance - LAR). О LAR говорят в тех случаях, когда устойчивость приобретают клетки в зоне, непосредственно примыкающей к локальному некрозу (расстояние примерно 2 мм). В этом случае вторичные некрозы совсем не образуются. Приобретенная устойчивость считается системной, если она развивается в клетках больного растения, удаленных от места первоначального внедрения патогена. SAR проявляется в снижении уровня накопления вирусов в клетках, уменьшении размеров вторичных некрозов, что свидетельствует об угнетении ближнего транспорта вируса. Не ясно, различаются ли между собой LAR и SAR или это один и тот же процесс, происходящий в клетках, расположенных на разном расстоянии от места первичного проникновения вируса в растение.

Приобретенная устойчивость, как правило, неспецифична. Устойчивость растений к вирусам вызывалась бактериальной и грибной инфекциями и наоборот. Устойчивость может индуцироваться не только патогенами, но и различными веществами.

Развитие SAR связано с распространением по растению веществ, образующихся в первично зараженных листьях. Было сделано предположение, что индуктором SAR является салициловая кислота, образующаяся при некротизации первично зараженных клеток. Оно основано на следующих фактах. Было установлено, что содержание эндогенной салициловой кислоты увеличивается в 20 раз в первично зараженных и в 5 раз в незараженных листьях сверхчувствительных растений табака сорта Ксанти нк по сравнению с чувствительными растениями Ксанти. Заражение растений огурцов вирусом некроза табака или грибом Colletotrichum lagenarium вызывало повышение концентрации салициловой кислоты во флоэмном соке. В опытах с использованием радиоактивной метки было установлено, что большая часть салициловой кислоты, содержащейся в неинфицированных листьях больных растений, транспортировалась из первично зараженных листьев. Трансгенные растения табака и Arabidopsis thaliana со встроенным бактериальным геном nahG, кодирующим фермент салицилат гидроксилазу, который катализирует превращение салициловой кислоты в катехол, не накапливали салициловую кислоту и не проявляли устойчивость к заражению патогеном. Однако имеются работы, результаты которых подвергают сомнению предположение о том, салициловая кислота является индуктором SAR, специфичным для сверхчувствительных растений. Так, было показано, что салициловая кислота одинаково угнетает репродукцию вируса в клетках чувствительных и сверхчувствительных растений.

При заболевании в растениях накапливаются вещества, повышающие их устойчивость к патогенам. Важную роль в неспецифической устойчивости растений играют антибиотические вещества - фитонциды, открытые Б. Токиным в 20-х годах 20 века. К ним относятся низкомолекулярные вещества разнообразного строения (алифатические соединения, хиноны, гликозиды с фенолами, спиртами), способные задерживать развитие или убивать микроорганизмы. Выделяясь при поранении лука, чеснока, летучие фитонциды защищают растение от патогенов уже над поверхностью органов. Нелетучие фитонциды локализованы в покровных тканях и участвуют в создании защитных свойств поверхности. Внутри клеток они могут накапливаться в вакуоли. При повреждениях количество фитонцидов резко возрастает, что предотвращает возможное инфицирование раненых тканей.

К антибиотическим веществам растений относят также фенолы. При повреждениях и заболеваниях в клетках активируется полифенолоксидаза, которая окисляет фенолы до высокотоксичных хинонов. Фенольные соединения убивают патогенны и клетки растения-хозяина, инактивируют экзоферменты патогенов и необходимы для синтеза лигнина.

Среди вирусных ингибиторов обнаружены белки, гликопротеины, полисахариды, РНК, фенольные соединения. Различают ингибиторы заражения, которые влияют непосредственно на вирусные частицы, делая их неинфекционными, или они блокируют рецепторы вирусов. Например, ингибиторы из сока свеклы, петрушки и смородины вызывали почти полное разрушение частиц вируса табачной мозаики, а сок алоэ вызывал линейную агрегацию частиц, что снижало возможность проникновения частиц в клетки. Ингибиторы размножения изменяют клеточный метаболизм, повышая тем самым устойчивость клеток, или угнетают вирусную репродукцию. В устойчивости растений к вирусам участвуют рибосом-инактивирующие белки (RIPs). Была установлена прямая корреляция между активностью RIPs в инактивации рибосом в растениях табака, ингибировании репродукции вируса табачной мозаики и формировании локальных некрозов. RIPs являются группой N-гликолитических ферментов, которые влияют на состояние рибосом, отрезая специфичный адениновый остаток у высоко консервативной последовательности рибосомальной 28S РНК. Это необратимое изменение приводит к неспособности рибосом связывать фактор элонгации 1а и поэтому блокирует трансляцию.

В сверхчувствительных растениях табака, пораженных вирусом табачной мозаики, были обнаружены белки, первоначально названные b-белками, а сейчас их обозначают как белки, связанные с патогенезом (PR-белки) или белки, ассоциированные с устойчивостью. Общепринятое название «PR-белки» предполагает, что их синтез индуцируется только патогенами. Однако эти белки образуются и в здоровых растениях при цветении и различных стрессовых воздействиях.

В 1999 году на основе аминокислотной последовательности, серологическим свойствам, энзимной и биологической активности была создана унифицированная для всех растений номенклатура PR-белков, состоящая из 14 семейств (PR-1 – PR-14). Некоторые PR-белки  имеют протеазную, рибонуклеазную, 1,3-b-глюканазную, хитиназную активности или являются ингибиторами протеаз. Высшие растения не имеют хитина. Вероятно, что эти белки участвуют в защите растений от грибов, так как хитин и b-1,3-глюканы являются главными компонентами клеточных стенок многих грибов и хитиназа гидролизует b-1,3-связи хитина. Хитиназа может действовать также как лизоцим, гидролизуя пептидоглюканы клеточных стенок бактерий. Однако b-1,3-глюканаза может способствовать транспорту вирусных частиц по листу. Это объясняется тем, что b-1,3-глюканаза разрушает каллозу (b-1,3-глюкан), которая откладывается в клеточной стенке и плазмодесмах и блокирует транспорт вируса.

В состав PR-белков входят также низкомолекулярные (5 кДа) белки - модификаторы клеточных мембран грибов и бактерий: тионины, дефенсины и липидпереносящие белки. Тионины токсичны в условиях in vitro для фитопатогенных грибов и бактерий. Их токсичность обусловлена разрушающим действием на мембраны патогенов. Дефенсины обладают сильными антигрибными свойствами, но не действуют на бактерии. Дефенсины из растений семейств Brassicaceae иSaxifragaceae подавляли рост растяжением гиф грибов, но способствовали их ветвлению. Дефенсины из растений семействAsteraceae, Fabaceae и Hippocastanaceae замедляли растяжение гиф, но не влияли на их морфологию.

В зараженных сверхчувствительных растениях накапливаются низкомолекулярные антибиотические вещества, получивших название фитоалексинов. Они обладают антибактериальным, фунгитоксичным и антинематодным действием. Фитоалексины синтезируются в живых клетках, граничащих с локальными некрозами. Из погибающих клеток поступает сигнал о необходимости синтеза фитоалексинов, которые затем перемещаются в некротизирующиеся клетки, где находится паразит. Фитоалексины подавляют рост патогенов, дезактивируют их экзоферменты. Транспортируются они по апопласту. Синтез их можно вызвать и химическими веществами. Многие высокоспециализированные патогены преодолевают фитоалексиновый барьер, разлагая фитоалексины или прекращая их синтез.

Еще одна возможность поддержания устойчивости растений - регуляция растением-хозяином образования соединений, жизненно важных для паразита. Так, фитофтора не способна продуцировать b-ситостерин, необходимый грибу для образования спор. Его источником для гриба служат клетки растения. У устойчивых к фитофторе растений в месте инфицирования клетки резко сокращают синтез этого вещества и паразит не может размножаться. Недостаток b-ситостерина также приводит к повреждению мембран патогена, что делает его клетки чувствительнее к воздействию фитоалексинов. Вместе с тем предшественники b-ситостерина используются на синтез фитоалексинов сесквитерпеноидной природы.

При заражении растений патогенами увеличивается активность литического компартмента клеток чувствительных и сверхчувствительных растений. К литическому компартменту клеток растений относят мелкие вакуоли - производные эндоплазматического ретикулума и аппарата Гольджи, функционирующие как первичные лизосомы животных, то есть содержащие гидролазы структуры, в которых нет субстратов для этих ферментов. Кроме этих вакуолей к литическому компартменту клеток растений относятся центральная вакуоль и другие вакуоли, эквивалентные вторичным лизосомам клеток животных, которые содержат гидролазы и их субстраты, а также плазмалемма и ее производные, в том числе парамуральные тела, и внеклеточные гидролазы, локализованные в клеточной стенке и в пространстве между стенкой и плазмалеммой.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Редкие растения

Тюльпан Грейга

News image

Тюльпан Грейга - один из самых крупноцветковых среднеазиатских видов тюльпанов и один из самых красивых. В ...

Солнцецвет арктический

News image

Солнцецвет арктический (Helianthemum arcticum) — многолетний полукустариник, относящийся к семейству ладанниковых. Считается редким видом, занесенным в ...

Тюльпан Кауфмана

News image

У любого культурного растения есть дикий предок. У тюльпанов это дикорастущие виды из Турции, Ирана и ...

Фиалка надрезанная

News image

Фиалка надрезанная — один из нежнейших и прекраснейших цветков. Относящаяся к семейству фиалковых, она предпочитает ра...

Астранция большая

News image

Астранция большая (Astrantia major) — эффектное многолетнее травянистое растение, относящееся к семейству зонтичных Apiaceae (Umbelliferae). Ас...

Мурайя из садов императора

News image

Недавно в России появилось редчайшее японское растение - мурайя. Наблюдение за его ростом, развитием, размножением и ...